Area is only one of the many applications of the definite integral. We can also use it to find the volume of a three-dimensional solid. The solids which you will focus on in this unit are those with cross sections that are all similar.

A 2-dimensional figurewhich, when rotated about the x-axis becomes a.......3-dimensional figure

Recall: The formula for the volume of a cylinder is \(V = \pi r^2 h \). A disk is basically a very short cylinder where the height, \(h \) is actually the \(w \) value. The radius retains its actual meaning. The \(\pi \) pops out in front and you get the following formula below:

The Disk Method

To find the volume of a solid of revolution with the **disk method**, use one of the following:

Horizontal Axis of Revolution

Volume \(V = \pi \int_b^a [R(x)]^2 \, dx \)

Vertical Axis of Revolution

Volume \(V = \pi \int_c^d [R(y)]^2 \, dy \)

Example 1: Using the Disk Method.

Find the volume of the solid formed by revolving the region bounded by the graphs of \(f(x) = \sqrt{\sin x} \) and the x-axis about the x-axis \((0 \leq x \leq \pi) \).

Sketch the graph and draw a representative rectangle.

\[
V = \pi \int_0^\pi \left(\sqrt{\sin x}\right)^2 \, dx
\]

\[
= \pi \int_0^\pi \sin x \, dx
\]

\[
= \left. \pi (-\cos x) \right|_0^\pi
\]

\[
= \pi (-(1) - (1)) = 2\pi
\]

\[
= \pi (\cos 0 - (-\cos 0)) = 2\pi
\]

Find the volume of the solid formed by revolving the region bounded by the graphs of \(f(x) = 2 - x^2 \) and \(g(x) = 1 \) about the line \(y = 1 \).

Sketch the graph and draw a representative rectangle.

\[
\sqrt{\pi} \int_{-1}^{1} ((2-x^2) - 1)^2 \, dx
\]

\[
= \pi \int_{-1}^{1} (1-x^2)^2 \, dx
\]

\[
= \pi \int_{-1}^{1} (1 - 2x^2 + x^4) \, dx
\]

\[
= \pi \left[x - \frac{2x^3}{3} + \frac{x^5}{5} \right]_{-1}^{1}
\]

\[
= \pi \left[(1 - \frac{2}{3} + \frac{1}{5}) - (\frac{2}{3} - \frac{1}{5}) \right]
\]

\[
= \pi \left[\frac{8}{15} - \left(-\frac{8}{15} \right) \right]
\]

\[
= \frac{16\pi}{15}
\]

The Washer Method
To find the volume of a solid of revolution with the washer method, use one of the following:

Horizontal Axis of Revolution

Volume \(V = \pi \int_{a}^{b} \left([R(x)]^2 - [r(x)]^2 \right) \, dx \)

Vertical Axis of Revolution

Volume \(V = \pi \int_{c}^{d} \left([R(y)]^2 - [r(y)]^2 \right) \, dy \)

Example 3: Using the Washer Method.

Find the volume of the solid formed by revolving the region bounded by the graphs of \(f(x) = \sqrt{x} \) and \(y = x^2 \) about the x-axis.

Sketch the graph and draw a representative rectangle.

\[
V = \pi \int_{0}^{1} \left([R(x)]^2 - [c(x)]^2 \right) \, dx
\]

\[
= \pi \int_{0}^{1} \left((\sqrt{x})^2 - (x^2 - 0)^2 \right) \, dx
\]

\[
= \pi \int_{0}^{1} \left(x - x^4 \right) \, dx
\]

\[
= \pi \left[\frac{x^2}{2} - \frac{x^5}{5} \right]_{0}^{1}
\]

\[
= \pi \left(\frac{1}{2} - \frac{1}{5} \right) - (0 - 0)
\]

\[
= \pi \left(\frac{3}{10} \right)
\]

\[
= \frac{3\pi}{10}
\]
Example 4: Integrating with Respect to y, Two Integral Case.
Find the volume of the solid formed by revolving the region bounded by the graphs of
\(y = x^2 + 1 \), \(y = 0 \), \(x = 0 \), and \(x = 1 \) about the y-axis.
Sketch the graph and draw a representative rectangle.

\[
\begin{align*}
\sqrt{\pi} & = \pi \int_0^1 (1 - 0)^2 \, dy + \pi \int_1^2 \left[(1 - 0)^2 - (\sqrt{y} - 1 - 0)^2 \right] \, dy \\
& = \pi \int_0^1 dy + \pi \int_1^2 (2 - y) \, dy \\
& = \pi \left[y \right]_0^1 + \pi \left[2y - \frac{y^2}{2} \right]_1^2 \\
& = \pi (1 - 0) + \pi \left((4 - 3) - (2 - \frac{1}{2}) \right) \\
& = \pi + \frac{1}{2} \pi \\
& = \frac{3\pi}{2}
\end{align*}
\]

Think of the above example in some other ways.
What would your integration set-up look like if you were to revolve the region about
(a) the line \(x = -1 \)?

\[
\begin{align*}
V &= \pi \int_0^1 \left((1 - 1)^2 - (0 - 1)^2 \right) \, dy \\
& + \pi \int_2^1 \left(\left(\sqrt{y} - 1 \right)^2 - (0 - 1)^2 \right) \, dy
\end{align*}
\]

(b) the line \(y = -2 \)?

\[
\begin{align*}
V &= \pi \int_0^1 \left((x^2 + 1 - 2)^2 - (0 - 2)^2 \right) \, dx \\
& + \pi \int_1^2 \left(\left(\sqrt{y} - 1 \right)^2 - (2 - 1)^2 \right) \, dy
\end{align*}
\]

(c) the line \(x = 2 \)?

\[
\begin{align*}
V &= \pi \int_0^1 \left((2 - 0)^2 - (2 - 1)^2 \right) \, dy \\
& + \pi \int_1^2 \left(\left(\sqrt{y} - 1 \right)^2 - (2 - 1)^2 \right) \, dy
\end{align*}
\]

Advice

1. Draw a representative rectangle that begins from the axis of revolution to the farthest boundary.
 (This distance will represent R)
2. Draw a representative rectangle that begins from the axis of revolution to the nearest boundary.
 (This distance will represent r)
Solids With Known Cross Sections

Volumes of Solids with Known Cross Sections

1. For cross sections of area $A(x)$ taken perpendicular to the x-axis.
 \[
 \text{Volume} = \int_a^b A(x) \, dx
 \]

2. For cross sections of area $A(y)$ taken perpendicular to the y-axis.
 \[
 \text{Volume} = \int_c^d A(y) \, dy
 \]

Example 5: Triangular Cross Sections.

Find the volume of the solid in which the base is the region bounded by the graphs of

\[f(x) = 1 - \frac{x}{2}, \quad g(x) = -1 + \frac{x}{2}, \quad \text{and} \quad x = 0. \]

a. The cross sections perpendicular to the x-axis are squares.

\[
V = \int_0^2 \left(2-x\right)^2 \, dx
= \int_0^2 \left(4 - 4x + x^2\right) \, dx
= 4x - 2x^2 + \frac{x^3}{3} \bigg|_0^2
= \left(8 - 8 + \frac{8}{3}\right) - (0) = \frac{8}{3}
\]

b. The cross sections perpendicular to the x-axis are semi-circles.

\[
V = \frac{1}{8} \pi \int_0^2 \left(2-x\right)^2 \, dx
= \frac{1}{8} \pi \int_0^2 \left(4 - 4x + x^2\right) \, dx
= \frac{1}{8} \pi \left[4x - 2x^2 + \frac{x^3}{3}\right]_0^2
= \frac{1}{8} \pi \left(\frac{8}{3}\right) = \frac{\pi}{3}
\]

c. The cross sections perpendicular to the x-axis are equilateral triangles.

\[
V = \frac{\sqrt{3}}{4} \int_0^2 \left(2-x\right)^2 \, dx
= \frac{\sqrt{3}}{4} \left(\frac{8}{3}\right) = \frac{2\sqrt{3}}{3}
\]