5.1: Rate of Change and Slope

Rate of Change – shows relationship between changing quantities.

\[
\text{rate of change} = \frac{\text{Change in dependant variable}}{\text{Change in independant variable}}
\]

On a graph, when we compare rise and run, we are talking about steepness of a line (slope).
You can use and 2 points on a line to find slope.

\[
\text{Slope (m)} = \frac{\text{vertical change}}{\text{horizontal change}} = \frac{\text{rise}}{\text{run}}
\]

Example: Find the slope of the line.

There is also a formula to use to find slope. Given two points \((x_1, y_1)\) and \((x_2, y_2)\)

\[
\text{Slope (m)} = \frac{y_2 - y_1}{x_2 - x_1} ; \text{ where } (x_1, y_1) \text{ and } (x_2, y_2) \text{ are points in the plane}
\]

You can either use the formula, or you can plot points and count.
REDUCE as much as possible, but leave in fraction form.

Example: Find the slope of a line that passes through the given points

1) \((-1,6)\) and \((5, 8)\) 2) Passing through \((-1, -2)\) and \((-4, 1)\) 3) Passing through \((-4, -2)\) and \((-8, -3)\)

4) Passing through \((4, 5)\) and \((4, 7)\) 5) Passing Through \((1, 2)\) and \((-1, 2)\)
Models of Slope

<table>
<thead>
<tr>
<th>Positive</th>
<th>Negative</th>
<th>Zero/Horizontal</th>
<th>Undefined/Vertical/No Slope</th>
</tr>
</thead>
</table>

Example: Find the value of s so that the line through $(s, 3)$ and $(7, 4)$ has a slope of 3.

Example: Find the value of r so that the line through $(r, 6)$ and $(10, -3)$ has a slope of $\frac{-3}{2}$.
Chapter 5 – Linear Functions

Name___________________

5.3: Slope Intercept Form

Slope Intercept Form:

\[y = mx + b \]

\(m = \text{slope of the line, } b = \text{y-intercept} \)

So to put an equation in slope intercept form you must find two things

- a slope (m)
- the y-intercept (b)

Y-intercept:
the \(y \) – coordinate of the the point where the graph crosses the \(y \) axis.

\((The \ value \ of \ x \ is \ always \ 0 \ at \ the \ y\text{-intercept}) \)

Example: What are the slope and y-intercept of the equation \(y = 5x - 2 \)?

Example: Write the equation of a line whose slope is \(-\frac{4}{5} \) and whose y-intercept is 7 in slope-intercept form.

Example: Write the equations of the lines represented on the following graphs
What happens when you don’t know either slope or the y-intercept?

1) What do you need first?

2) Ordered pairs represent what 2 variables in the equation \(y = mx + b \)?

Steps: (When you don’t know slope or the y-intercept.)

1) Find the slope using the given points. (Plug in for “m”)
2) Choose either point and plug in for \(x \) and \(y \).
3) Solve for “b”
4) Write the final equation using the “m” and the “b” that you found.

Example: Write an equation of the line passing through \((2,1)\) and \((5,-8)\) in slope-intercept form.

Example: Write an equation of the line passing through \((3,-2)\) and \((1,-3)\) in slope-intercept form.

Graphing Lines Using Slope and Y-Intercept

1) Get to slope-intercept form by solving for \(y \)
2) State what the slope is and the y-intercept.
3) Plot the y-intercept
4) From the y-intercept, use the slope by doing rise over run to get the next point.
5) Draw the line

Get the following equations to slope-intercept form.

1) \(5x + 2y = 8 \)
2) \(4x - 3y = -9 \)
Chapter 5 – Linear Functions

Example: Graph the lines:

1) \(y = 2x - 1 \)

2) \(y = \frac{-2}{3}x + 1 \)

3) \(5x - 3y = 6 \)

Example: Story Problem:
A plumber charges a fee of $65 plus $35 per hour. Write an equation to model the total cost \(y \) of a repair that takes \(x \) hours. Then, make a graph that models this information.
Example: Bob measured the height of a flower in meters for three consecutive days. His results are shown in the table below.

<table>
<thead>
<tr>
<th>Day</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>2</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Based on the table, what is the equation that models the height(h) of the flower relative to the number of days(d)?
5.4: Point Slope Form

Point Slope Form

\[y - y_1 = m(x - x_1) \]

- \(m = \text{slope} \)
- \((x_1, y_1) = \text{point the line passes through}\)

What two things do you need based on the name?

Steps for writing in Point-Slope Form:
1) Must know the slope (Find it out if given two points)
2) Must know one point the line passes through (Label this as your \(x_1 \) and \(y_1 \))
3) Plug into the equation

Example: Write the following in point-slope form for the line passing through the given point and having the given slope.

(1, 5); \(m = -2 \)
(4,2) with slope \(\frac{1}{2} \)
(-2, -3); \(m = \frac{1}{2} \)

Graphing using Point-Slope Form

Ask yourself which one is easier?

1. **Convert to** \(y = mx + b \)
2. **Plot the** \(y \)-intercept and use the slope
3. **State the** slope and the given point
4. **Plot the** given point and use the slope
Chapter 5 – Linear Functions

Example: What is the graph of \(y + 7 = -\frac{4}{5}(x - 4) \)?

Example: Write the point-slope form of an equation for a horizontal line passing through (6, -2).

Hint: What is the slope of a horizontal line?

Example: Write the point-slope form of a line passing through (2, 3) and (-1, 6)

Example: Write the equation of the line passing through (-2, 4) and (4, 8) in slope-intercept form.

Example: Write the equation of a line passing through the two points (-3, -1) and (6, -4) in slope-intercept form.
5.5: Standard Form

Ax + By = C

Mainly used in Chapter 6
Main Use is for Quick Graphing or Finding Intercepts

Quick Graphs:
1) Plug zero in for “x” and you find the y-intercept. (Write as (0 , intercept))
2) Plug zero in for “y” and you find the x-intercept. (Write as (intercept , 0))
3) Plot the two values and graph the line.

Examples: Determine what the x-intercept and the y-intercept are for the following equations.

1) 4x + 3y = 12
2) 2x – 6y = -18
3) 4x – 5y = 16

Examples: What is the graph of the following equations?

1) 2x + 3y = 12
2) 4x – 5y = -20
Story Problems:
A person walks into a store and wants to buy pairs of jeans and t-shirts. Each pair of jean costs $35 and each t-shirt costs $7. Write an equation to represent the situation if the person spends a total of $140.

Why can’t we solve the equation that we wrote?

Example: Given the equation $ax + 3y = 12$ and the graph below, Find the value of ‘a’.

![Graph with points (0, 4) and (6, 0)]
5.6: Parallel and Perpendicular Lines

Parallel Lines:
1) Lines that never ____________________________
2) Lines that have the same ____________________

Writing the Equation of Parallel Lines Through a Given Point

Steps:
1) Find the slope of the given line (Use only the slope from the given equation, label as “m”)
2) Use that slope and the given point in point-slope form (Label the point as \((x_1, y_1)\))
3) Write the final equation in the specific form

Example: Write the slope-intercept form of an equation for the line passing through \((4, -2)\) and is parallel to the graph of \(y = \frac{1}{2}x - 7\).

Example: Write the slope-intercept form of an equation parallel to the line that passes through the points \((1, 5)\) and \((-4, 15)\).
Chapter 5 – Linear Functions

Name___________________

Perpendicular Lines:

1) Lines that ________________ and form ________________

2) Slopes are opposite reciprocals

Opposite Reciprocals $-\frac{2}{3}$ and $-\frac{3}{2}$

Steps for Writing the Equation of a Line Perpendicular to a Given Line:

1) Identify slope of the given line (Get to $y=mx + b$)
2) Take the opposite reciprocal (Flip the slope and change the sign)
3) Use the new slope and point to write the new equation by starting in point-slope form.

Example: Write the slope-intercept form of an equation passing through $(7, -1)$ and perpendicular to $y = \frac{7}{2}x - 5$

Example: Write the point-slope form of a line perpendicular to $2y + 5x = 2$ and passing through $(0, 6)$

Determining Parallel or Perpendicular

Convert to Slope-Intercept Form

Look at the slope

Same Slope and Different Y-Intercepts – parallel
Same Slope and Same Y-Intercepts – Same Line
Slopes are Opposite Reciprocals – perpendicular
Slope are Neither – neither

Examples: Determine if the following equation are parallel lines, perpendicular or neither.

1) $y = \frac{-2}{3}x + 2$
 $y = \frac{-2}{3}x - 2$

2) $3x - 5y = 10$
 $10x + 6y = 24$